Regulation of the NMDA receptor complex and trafficking by activity-dependent phosphorylation of the NR2B subunit PDZ ligand.
نویسندگان
چکیده
Interactions between NMDA receptors (NMDARs) and the PDZ [postsynaptic density-95 (PSD-95)/Discs large/zona occludens-1] domains of PSD-95/SAP90 (synapse-associated protein with a molecular weight of 90 kDa) family proteins play important roles in the synaptic targeting and signaling of NMDARs. However, little is known about the mechanisms that regulate these PDZ domain-mediated interactions. Here we show that casein kinase II (CK2) phosphorylates the serine residue (Ser1480) within the C-terminal PDZ ligand (IESDV) of the NR2B subunit of NMDAR in vitro and in vivo. Phosphorylation of Ser1480 disrupts the interaction of NR2B with the PDZ domains of PSD-95 and SAP102 and decreases surface NR2B expression in neurons. Interestingly, activity of the NMDAR and Ca2+/calmodulin-dependent protein kinase II regulates CK2 phosphorylation of Ser1480. Furthermore, CK2 colocalizes with NR1 and PSD-95 at synaptic sites. These results indicate that activity-dependent CK2 phosphorylation of the NR2B PDZ ligand regulates the interaction of NMDAR with PSD-95/SAP90 family proteins as well as surface NMDAR expression and may be a critical mechanism for modulating excitatory synaptic function and plasticity.
منابع مشابه
Dopamine D1 activation potentiates striatal NMDA receptors by tyrosine phosphorylation-dependent subunit trafficking.
Interactions between dopaminergic and glutamatergic afferents in the striatum are essential for motor learning and the regulation of movement. An important mechanism for these interactions is the ability of dopamine, through D1 receptors, to potentiate NMDA glutamate receptor function. Here we show that, in striatal neurons, D1 receptor activation leads to rapid trafficking of NMDA receptor sub...
متن کاملThe Synaptic Localization of NR2B-Containing NMDA Receptors Is Controlled by Interactions with PDZ Proteins and AP-2
The NMDA receptor (NMDAR) is a component of excitatory synapses and a key participant in synaptic plasticity. We investigated the role of two domains in the C terminus of the NR2B subunit--the PDZ binding domain and the clathrin adaptor protein (AP-2) binding motif--in the synaptic localization of NMDA receptors. NR2B subunits lacking functional PDZ binding are excluded from the synapse. Mutati...
متن کاملCdk5 regulates the phosphorylation of tyrosine 1472 NR2B and the surface expression of NMDA receptors.
NMDA receptors (NMDARs) are a major class of ionotropic glutamate receptors that can undergo activity-dependent changes in surface expression. Clathrin-mediated endocytosis is a mechanism by which the surface expression of NR2B-containing NMDA receptors is regulated. The C terminus of the NMDA receptor subunit NR2B contains the internalization motif YEKL, which is the binding site for the clath...
متن کاملGrowth Factor-Dependent Trafficking of Cerebellar NMDA Receptors via Protein Kinase B/Akt Phosphorylation of NR2C
NMDA receptor subunit composition varies throughout the brain, providing molecular diversity in NMDA receptor function. The NR2 subunits (NR2A-D) in large part dictate the distinct functional properties of NMDA receptors and differentially regulate receptor trafficking. Although the NR2C subunit is highly enriched in cerebellar granule cells and plays a unique role in cerebellar function, littl...
متن کاملSrc inhibition reduces NR2B surface expression and synaptic plasticity in the amygdala.
The Src protein tyrosine kinase plays a central role in the regulation of N-methyl-d-aspartate receptor (NMDAR) activity by regulating NMDAR subunit 2B (NR2B) surface expression. In the amygdala, NMDA-dependent synaptic plasticity resulting from convergent somatosensory and auditory inputs contributes to emotional memory; however, the role of Src tyrosine kinase has not been investigated. We ha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 24 45 شماره
صفحات -
تاریخ انتشار 2004